A boundary condition capturing immersed interface method for 3D rigid objects in a flow
نویسنده
چکیده
To simulate the flow around an object, we can replace the object with the fluid enclosed by a singular force. We can then simulate the flow on a fixed domain with a fluid-fluid interface supporting the singular force. In this paper, we present a boundary condition capturing approach to determine the singular force for a 3D rigid object. We apply a discontinuous body force to enforce the rigid motion of the fluid replacing the object and compute the singular force based on the kinematics of the object. Due to the singular force and the body force, the flow is not smooth across the interface. We solve the flow using the immersed interface method. Our boundary condition capturing immersed interface method is very efficient and stable, and its accuracy based on the infinity norm is near second order for the velocity and above first order for the pressure.
منابع مشابه
Singular forces in the immersed interface method for rigid objects in 3D
∧ for determining the singular force for the boundary of a rigid objectwith prescribedmotion in 2D [Sheng Xu, The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow, J. Comput. Phys. 227 (2008) 5045–5071]. ∧ Necessary formulas for extending the approach to 3D ∧ are derived in this ∧ work. With the implementation of these formulas, the i...
متن کاملAn immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
We present an immersed interface method for the incompressible Navier-Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid. The forces are related to the jumps in pressure and the jumps in t...
متن کاملA class of Cartesian grid embedded boundary algorithms for incompressible flow with time-varying complex geometries
We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing Immersed Boundary Methods; i.e. the proposed algorithms calculate and apply the force-density in the extended solid domain to...
متن کاملAn Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pr...
متن کاملA Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys
Shoulder geometry of tool plays an important role in friction-stir welding because it controls thermal interactions and heat generation. This work is proposed and developed a coupled rigid-viscoplastic numerical modeling based on computational fluid dynamics and finite element calculations aiming to understand these interactions. Model solves mass conservation, momentum, and energy equations in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011